Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China
نویسندگان
چکیده
Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.
منابع مشابه
Indoor thermal factors and symptoms in office workers: findings from the US EPA BASE study.
UNLABELLED Some prior research in office buildings has associated higher indoor temperatures even within the recommended thermal comfort range with increased worker symptoms. We reexamined this relationship in data from 95 office buildings in the US Environmental Protection Agency's Building Assessment Survey and Evaluation Study. We investigated relationships between building-related symptoms ...
متن کاملThermal Behavior of Double Skin Facade in Terms of Energy Consumption in the Climate of North of Iran-Rasht
Industrialization and increasing demand for the consumption of fossil fuels cause that energy becomes a strategic factor. Energy crisis and the emergence of modern architecture led designers to pay more attention to the important task of building's envelope. Building skins play an important role in building thermal behavior and reduce energy consumption. If Double Skin Facades properly designed...
متن کاملInvestigation of combined effects of noise and low air temperature on human-environmental comfort and physiological responses- An experimental study
Background and Aim: Combined exposure to noise and temperature can affect the neurophysiological responses of the office staff. The present study was done to investigate the impacts of combined exposure to noise and low air temperature on physiological responses and environmental comfort. Methods: In this experimental study, the studied population included the students who were randomly selecte...
متن کاملPerceived Indoor Environment and Occupants’ Comfort in European “Modern” Office Buildings: The OFFICAIR Study
Indoor environmental conditions (thermal, noise, light, and indoor air quality) may affect workers' comfort, and consequently their health and well-being, as well as their productivity. This study aimed to assess the relations between perceived indoor environment and occupants' comfort, and to examine the modifying effects of both personal and building characteristics. Within the framework of t...
متن کاملParametric Energy Analysis in Early Stage Design: Case of High-rise Office Buildings in Tehran
Nowadays, the high rates of energy consumption of buildings in contemporary societies, as well as in global problematics such as climate change, depletion of natural resources and environmental pollution, is widely recognized. In this context, energy efficiency of buildings has become a crucial aspect of national and international energy policies. Nevertheless, the design of high performance bu...
متن کامل